Scaling of the U13A Remote Controlled Helicopter

Project Proposal

Abdul Aldulaimi, Travis Cole, David Cosio, Matt Finch, Jacob Ruechel, Randy Van Dusen 12/9/13

Overview

- Project Description
- Need and Goal
- Objectives
- QFD
- Concept Generation and Selection
- Analysis Overview
- Blade Analysis

Overview Continued

- Landing Gear Analysis
- Final Modeled U13A Helicopter
- New Component Parts
- Cost Analysis
- Gantt Chart
- Summary
- References

Problem Description

- Client is Dr. Kosaraju
- Task of scaling U13A remote controlled helicopter by 1.5
- Capability to have mission specific attachments

Need and Goal

Need:

The U13A is too small.

Goal:

Successfully upscale a remote controlled helicopter with the ability to add mission specific accessories.

Objectives

Objectives	Measurement Basis	Units
Design and build a RC helicopter	Amount of materials	Dollars
Attachments	Camera parts	Dollars
Batteries	Two sets of batteries	Dollars
Carrying Capabilities	Weight	lbs
Waterproof Materials	Cost for materials	Dollars
Lift Capabilities	Height range	Meters

Quality Function Deployment

			Engineering Requirements					
			Yield Strength	Weight	Power	Length	Lift	
ıts	Scale	Scale Ratio to 1.5	0	5	0	10	7	
ustomer Requiremer	1	Perfomance	5	0	0	0	7	
	5	Durability	7	0	0	0	0	
	7	Flight Duration	0	0	7	0	0	
0	10	Attachments	1	5	5	0	0	
		Total	50	55	99	10	42	
		Units	psi	lb	ft-lb/s	in	lbf	
			Engineering Targets					

Concept Generation and Selection

- Blades
- Landing Gear
- Battery

Blades

• Problem: Blade Contact

• Solution: Rigid Upper Blade Design

Blade Contact:	Column1 🛛	Colun	Co	Column4	•	Col
Category	Ease of Design	Safety	Cost	Estimated L	ife	Total
Raised Upper Rotor	3	5	8		7	5.8
Durable Blade Material	7	5	4		6	5.5
Rigid Blade Design	8	5	8		8	7.1
Weight (%)	20	30	20		30	

Landing Gear

• Problem: Helicopter lands on its side

• Solution: Larger Rounded Landing Gear

Landing Gear:	🖬 Column1	Column2	Column3 🛛 🗾	Column4 🛛 🗾	Colu 💌	Colun
Category	Helicopter Weight	Take-off/Landing	Stability on ground	Landing Impact	Cost	Total
Larger Landing Gear (Flat)	7	5	7	7	5	6.4
Smaller Landing Gear (Flat)	1	1	4	6	7	3.2
Smaller Landing Gear (Rounded	d) 1	2	4	8	7	3.8
Larger Landing Gear (Rounded)	7	8	7	9	5	7.4
Weight %	30	20	20	20	10	

Battery

• Problem: Short Battery Life

• Solution: Set batteries in series

	Voltage	Capacity	Weight	Durability	Cost	Total
Single LiPo	5	5	10	4	9	6.15
LiPos in Parallel	5	10	7	8	6	7.1
LiPos in Series	10	5	8	8	6	7.45
Parallel+Series	10	10	6	8	3	7.9
Weight (%)	25	30	25	5	15	

Analysis Overview

- Areas for engineering analysis
- Blades

• Landing gear

Blade Analysis

- Goal of analysis:
 - Find approximate lift force to be generated by the scaled helicopter.
 - Calculate the max stresses occurring in the blades.
 - Choose a suitable blade material.

Blade Dimensions & Assumptions

- Length = 7.5 inches.
- Width = 1.2 inches.
- Thickness = 0.10 inches.
- Coefficient of drag = 0.1.
- Angular velocity = 1600 RPM.
- Coefficient of lift = 0.4.

Forces on Rotor in Flight

Force Analysis

- Lift greater than drag and will result in bending upward.
- Power = 0.268 hp
- Power loading = 0.2184 hp/ft²
- Thrust loading = 13.94 lbs/hp
- Lift = 3.74 lbs/rotor (1.87 lbs/blade)
- Drag = 0.1417 lbs per rotor

Blade Strength Analysis

 Treat as a simple cantilever of constant width and thickness along the length with a point load at its tip.

- Maximum moment = 14.025 in-lbs
- Maximum stress = 7012.5 psi

Common RC Blade Materials

- Polypropylene cheapest, great impact resistance, but cannot handle stresses.
- Wood second cheapest, handles all stresses, not great impact resistance.
- Carbon fiber and fiber glass expensive, lightweight, poor impact resistance.
- No great choice → rapid prototyping provides additional options.

Rapid Prototyping the Blades

- 3D printing allows for easily reproducible custom blades.
- Two options for blade material: ABS & Ultem
 - Can handle necessary stresses
 - Great impact resistance
- Either material will work for this application
 - 1st choice is Ultem, however, availability is not 100% guaranteed.

Landing Gear Analysis

- Material is Ethylene Vinyl Acetate (EVA)
- Material has a compressive strength of 1450
 PSI and tensile strength of 2000 PSI
- Excellent shock absorbing properties
- We want it to simply deform and spring back for short or non energetic landings but to break for high energy landings.

Landing Gear Analysis

- Landing gear needs to survive a 6 ft drop with abrupt stop
- Impact force equation $F_I = \frac{Wxh}{s}$
- Total force is 172.8 lbs

Randy Van Dusen 21

Landing Gear Analysis

- Total compressive force on leg is 40.6 lbs
- Compare stress in leg to the UCS
- Stress is $\sigma = \frac{F}{A}$
- Using A = 0.15 in^2 the stress is 270.6 PSI
- 270.6 PSI < 1450 PSI so the landing gear will survive 6 ft fall

Modeled U13A

- Tasks over the last three weeks
 - Final Model
 - Material Selection
- Things to do in upcoming weeks
 - Order Parts
 - 3D Printing

Jacob Ruechel 25

New Components

Cost Analysis

Quantit	y Pa	art	Name	Price Per Part	Price
2	Main 250 Motors	Hobbymate HB2622-5000kv Brushless Motor	\$	24.80 \$	49.60
1	Tail Rotor	12000KV Brushless Tail Motor for Micro Heli	\$	14.99 \$	14.99
2	Main Rotor ESC	New HobbyWing Flyfun ESC 30A	\$	17.49 \$	34.98
1	Tail ESC	New HobbyWing Flyfun ESC 10A	\$	11.99 \$	11.99
3	Batteries	HYPERION G3 EX 1600 MAH 2S 7.4V 45C/90C LIPOLY PACK	\$	25.95 \$	77.85
1	Top Shaft	HP Heli's Inner Main Shaft for the X-2 helicopter	\$	10.99 \$	10.99
1	Lower Shaft	HP Heli's Outer Main Shaft w/Gear for the X-2 helicopter	\$	10.99 \$	10.99
1	Transmiter-Reciver	Fly Sky CT6B OEM Version Exceed RC 6-Ch 2.4Ghz Transmitter w/ Receiver	\$	44.70 \$	44.70
2	Small Gears	Mod 0.5. 10 Tooth. 2.3 mm ID Pinion	Ś	1.99 \$	3.98
2	Large Gears	Mod 0.5. 80 Tooth. 6 mm ID Gear	Ś	2.00 \$	4.00
-	Screws	IPPM3006 - M3 x 6mm - Thread forming screws For Plastic (100)	Ś	2.40 \$	2.40
- 10	Pins	M2 - 8mm Roll Pins	Ś	0.11 \$	1 10
1	Camera	Wholesale - New mini Wireless Sny Camera Hidden cam Security kit	¢	30.43 \$	30.43
1	3d Printer Material	ABS Polymer for Rapid Prototyping	¢	500.45 \$	500.45
Total	Su Philler Material		ې 	\$	798.00

Cost Analysis Continued

- Biggest expense is polymer material but is being paid for by student fees
- This material will be used for almost every structural material in helicopter
- Electronic components are second most expensive
- No manufacturing costs to consider

Gantt Chart

Spring Gantt Chart

Abdul Aldulaimi 30

Summary

- Our task is to upscale a U13A helicopter by 1.5.
- The need is that we have a small helicopter and our goal is to upscale the helicopter by 1.5.
- Stated what our objectives were.
- Calculated the requirements on the QFD table.
- The concept and generation that our team chose to analyze were the blades, landing gear, and battery.

Summary Continued

- During the process of selection, there were three main problems: chips in the blades, helicopter landing on its side, and short battery life.
- Our team then decided that the blades and landing gear needed the most engineering analysis due to their importance towards helicopter.
- During the blade analysis, we found the forces on the rotors in flight, and calculated the maximum moment to be 14.025 in-lbs and maximum stress = 7012.5 psi.

Summary Continued

- Rapid prototyping was chosen based on the material selection. Our team decided to 3D print the blades because it can be easily reproduced if a blade fails. ABS & Ultem was the material that can handle the stress load.
- Using the material ethylene vinyl acetate, we found that the scaled landing gear will easily survive a 6 foot fall.

Summary Continued

- We showed the current model of the U13A helicopter in both assembled and exploded views and highlighted what the main parts were going to be used in rapid prototype.
- Performed a cost analysis on the number of parts to order.
- Gave an update on where our team is currently at and provided a spring project plan.

References

- Wolfgang, R.C., 2006, "Lift Produced by Multi-Blade Heads", from http://rc.runryder.com/helicopter/t276865p1/
- Squire, J., 2010, "Airfoil lift and drag coefficients", University of Maryland Baltimore County, from http://www.csee.umbc.edu/~squire/cs455_lairfoil.shtml
- Heli Chair, 2011, "Aerodynamics 101", from http://www.heli-chair.com/aerodynamics_101.html
- Heliguy, 2010, "Remote Control Helicopters FAQ", from http://www.heliguy.com/nexus/newbie.html
- Seddon, J., 1990, *Basic Helicopter Aerodynamics*, Mackays of Chatham, Chatham, Kent.
- UDIRCTOYS INDUSTRY CO., 2012, "UDIR/C," http://www.udirc.com/eng/show.asp?id=49

References Continued

- Audio / Video Spy Camera Transmitter. Security and Self Defense Store, n.d. Web. 27 Oct. 2013.
- Philpot, Timothy A. <u>Mechanics of Materials: and</u> <u>Integrated Learning System</u>, John Wiley and Sons Inc. Rolla Missouri, 2011.
- Budynas, Richard G., Nisbett, J. Keith, <u>Shigley's</u> <u>Mechanical Engineering Design</u>, Ninth Edition, McGraw Hill Inc., New York, New York, 2011.

Questions?